Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 67
Filter
1.
J Virol Methods ; 318: 114755, 2023 Aug.
Article in English | MEDLINE | ID: covidwho-20240515

ABSTRACT

Porcine epidemic diarrhea virus (PEDV) is a highly contagious intestinal virus. However, the current PEDV vaccine, which is produced from classical strain G1, offers low protection against recently emerged strain G2. This study aims to develop a better vaccine strain by propagating the PS6 strain, a G2b subgroup originating from Vietnam, on Vero cells until the 100th passage. As the virus was propagated, its titer increased, and its harvest time decreased. Analysis of the nucleotide and amino acid variation of the PS6 strain showed that the P100PS6 had 11, 4, and 2 amino acid variations in the 0 domain, B domain, and ORF3 protein, respectively, compared to the P7PS6 strain. Notably, the ORF3 gene was truncated due to a 16-nucleotide deletion mutation, resulting in a stop codon. The PS6 strain's virulence was evaluated in 5-day-old piglets, with P7PS6 and P100PS6 chosen for comparison. The results showed that P100PS6-inoculated piglets exhibited mild clinical symptoms and histopathological lesions, with a 100% survival rate. In contrast, P7PS6-inoculated piglets showed rapid and typical clinical symptoms of PEDV infection, and the survival rate was 0%. Additionally, the antibodies (IgG and IgA) produced from inoculated piglets with P100PS6 bound to both the P7PS6 and P100PS6 antigens. This finding suggested that the P100PS6 strain was attenuated and could be used to develop a live-attenuated vaccine against highly pathogenic and prevalent G2b-PEDV strains.


Subject(s)
Coronavirus Infections , Porcine epidemic diarrhea virus , Swine Diseases , Chlorocebus aethiops , Swine , Animals , Vero Cells , Porcine epidemic diarrhea virus/genetics , Virulence , Serial Passage , Vaccines, Attenuated/genetics , Coronavirus Infections/epidemiology , Diarrhea/veterinary
2.
Arch Virol ; 168(6): 166, 2023 May 22.
Article in English | MEDLINE | ID: covidwho-20238472

ABSTRACT

Clostridium perfringens is a constituent of the normal gut microbiome in pigs; however, it can potentially cause pre- and post-weaning diarrhea. Nevertheless, the importance of this bacterium as a primary pathogen of diarrhea in piglets needs to be better understood, and the epidemiology of C. perfringens in Korean pig populations is unknown. To study the prevalence and typing of C. perfringens, 203 fecal samples were collected from diarrheal piglets on 61 swine farms during 2021-2022 and examined for the presence of C. perfringens and enteric viruses, including porcine epidemic diarrhea virus (PEDV). We determined that the most frequently identified type of C. perfringens was C. perfringens type A (CPA; 64/203, 31.5%). Among the CPA infections, single infections with CPA (30/64, 46.9%) and coinfections with CPA and PEDV (29/64, 45.3%) were the most common in diarrheal samples. Furthermore, we conducted animal experiments to investigate the clinical outcome of single infections and coinfections with highly pathogenic (HP)-PEDV and CPA in weaned piglets. The pigs infected with HP-PEDV or CPA alone showed mild or no diarrhea, and none of them died. However, animals that were co-inoculated with HP-PEDV and CPA showed more-severe diarrheal signs than those of the singly infected pigs. Additionally, CPA promoted PEDV replication in coinfected piglets, with high viral titers in the feces. A histopathological examination revealed more-severe villous atrophy in the small intestine of coinfected pigs than in singly infected pigs. This indicates a synergistic effect of PEDV and CPA coinfection on clinical disease in weaned piglets.


Subject(s)
Coinfection , Coronavirus Infections , Porcine epidemic diarrhea virus , Swine Diseases , Swine , Animals , Clostridium perfringens , Coinfection/epidemiology , Coinfection/veterinary , Weaning , Coronavirus Infections/epidemiology , Coronavirus Infections/veterinary , Coronavirus Infections/pathology , Diarrhea/epidemiology , Diarrhea/veterinary , Diarrhea/pathology , Swine Diseases/epidemiology , Patient Acuity
3.
Vopr Virusol ; 67(6): 465-474, 2023 02 07.
Article in Russian | MEDLINE | ID: covidwho-20236063

ABSTRACT

INTRODUCTION: Bovine coronaviruses (BCoVs) are causative agents of diarrhea, respiratory diseases in calves and winter cow dysentery. The study of genetic diversity of these viruses is topical issue. The purpose of the research is studying the genetic diversity of BCoV isolates circulating among dairy cattle in Siberia. MATERIALS AND METHODS: Specimens used in this study were collected from animals that died or was forcedly slaughtered before the start of the study. The target for amplification were nucleotide sequences of S and N gene regions. RESULTS: Based on the results of RT-PCR testing, virus genome was present in 16.3% of samples from calves with diarrheal syndrome and in 9.9% with respiratory syndrome. The nucleotide sequences of S gene region were determined for 18 isolates, and N gene sequences - for 12 isolates. Based on S gene, isolates were divided into two clades each containing two subclades. First subclade of first clade (European line) included 11 isolates. Second one included classic strains Quebec and Mebus, strains from Europe, USA and Korea, but none of sequences from this study belonged to this subclade. 6 isolates belonged to first subclade of second clade (American-Asian line). Second subclade (mixed line) included one isolate. N gene sequences formed two clades, one of them included two subclades. First subclade included 3 isolates (American-Asian line), and second subclade (mixed) included one isolate. Second clade (mixed) included 8 sequences. No differences in phylogenetic grouping between intestinal and respiratory isolates, as well as according to their geographic origin were identified. CONCLUSION: The studied population of BCoV isolates is heterogeneous. Nucleotide sequence analysis is a useful tool for studying molecular epidemiology of BCoV. It can be beneficial for choice of vaccines to be used in a particular geographic region.


Subject(s)
Betacoronavirus 1 , Cattle Diseases , Coronavirus Infections , Coronavirus, Bovine , Coronavirus , Female , Cattle , Animals , Coronavirus, Bovine/genetics , Coronavirus/genetics , Phylogeny , Coronavirus Infections/epidemiology , Coronavirus Infections/veterinary , Diarrhea/epidemiology , Diarrhea/veterinary , Genetic Variation , Cattle Diseases/epidemiology
4.
J Microbiol Methods ; 209: 106738, 2023 06.
Article in English | MEDLINE | ID: covidwho-2318087

ABSTRACT

Neonatal calf diarrhea (NCD) is frequently associated with single or mixed viral, bacterial and/or protozoal infections. Consequently, laboratory diagnostic of NCD usually requires specific tests for each potential agent; a time-consuming, laborious and expensive process. Herein, we describe an end-point multiplex PCR/reverse transcription-PCR (RT-PCR) for detection of five major NCD agents: bovine rotavirus (BRV), bovine coronavirus (BCoV), Escherichia coli K99 (E. coli K99), Salmonella enterica (S. enterica) and Cryptosporidium parvum (C. parvum). Initially, we selected and/or designed high-coverage primers. Subsequently, we optimized multiplex PCR/RT-PCR conditions. Next, we evaluated the analytical sensitivity of the assay and assessed the performance of the reaction by testing 95 samples of diarrheic calf feces. The analytical specificity was evaluated against bovine viral diarrhea virus (BVDV), E. coli heat-stable enterotoxin (STa) and Eimeria spp. The detection limit of our assay was about 10 infectious units of BRV, 10-2 dilution of a BCoV positive sample pool, about 5 × 10-4 CFU for S. enterica, 5 × 10-6 CFU for E. coli K99 and 50 oocysts for C. parvum. No non-specific amplification of other bovine diarrhea agents was detected. Out of 95 samples analyzed, 50 were positive for at least one target, being 35 single and 15 mixed infections. BRV was the most frequent agent detected in single infections (16/35), followed by Cryptosporidium spp. (11/35), which was the most frequent in mixed infections (11/15). Positive and negative multiplex results were confirmed in individual reactions. In conclusion, we described an end-point multiplex PCR/RT-PCR for faster and easier NCD diagnosis, which may be useful for routine diagnosis and surveillance studies.


Subject(s)
Coinfection , Cryptosporidiosis , Cryptosporidium parvum , Cryptosporidium , Noncommunicable Diseases , Infant, Newborn , Humans , Multiplex Polymerase Chain Reaction , Escherichia coli , Cryptosporidiosis/diagnosis , Reverse Transcription , Diarrhea/diagnosis , Diarrhea/veterinary , Cryptosporidium parvum/genetics
5.
Arch Virol ; 168(5): 152, 2023 May 04.
Article in English | MEDLINE | ID: covidwho-2317672

ABSTRACT

Porcine epidemic diarrhea (PED) virus (PEDV) is a highly contagious virus. PED was first identified in 2008 and has greatly affected the Vietnamese pig production economy. The aim of this study was to investigate the epidemiological and genetic characteristics of PEDV in piglet herds in the Mekong Delta, Vietnam. Diarrheal stool and intestinal samples from 2262 piglets from 191 herds in five provinces were collected to test for the presence of PEDV. Ten PEDV strains were randomly selected for sequencing, and four genes encoding PEDV structural proteins were analyzed. The rates of herds and samples positive for PEDV were 27.23% and 27.72%, respectively. In positive herds, the morbidity and mortality of PEDV-positive piglets were 97.97% and 79.06%, respectively, with most of the infected piglets under 7 days of age. Phylogenetic analysis showed that the 10 PEDV strains from this study clustered with genotype G2 strains from Vietnam and neighboring countries. Many amino acid substitutions were identified in important antigenic regions in the spike protein of the 10 strains when compared to four PEDV vaccine strains. This study provides novel insights into the epidemiology and genetic diversity of circulating PEDV strains, which could facilitate the development of an appropriate and proactive strategy for controlling PED.


Subject(s)
Coronavirus Infections , Porcine epidemic diarrhea virus , Swine Diseases , Animals , Swine , Porcine epidemic diarrhea virus/genetics , Phylogeny , Vietnam/epidemiology , Coronavirus Infections/epidemiology , Coronavirus Infections/veterinary , Molecular Epidemiology , Diarrhea/epidemiology , Diarrhea/veterinary , Swine Diseases/epidemiology
6.
Vet Microbiol ; 280: 109727, 2023 May.
Article in English | MEDLINE | ID: covidwho-2297087

ABSTRACT

Our previous study revealed that tissue culture-adapted porcine epidemic diarrhea virus (PEDV) strains, namely KNU-141112-S DEL2/ORF3 and -S DEL5/ORF3, were attenuated to different extents in vivo, suggesting that their independent deletion (DEL) signatures, including 2-amino acid (aa; residues 56-57) or 5-aa (residues 56-60) DEL in the N-terminal domain (NTD) of the spike (S) protein, may contribute to the reduced virulence of each strain. To investigate whether each DEL in the NTD of the S1 subunit is a determinant for the virulence of PEDV, we generated two mutant viruses, named icS DEL2 and icS DEL5, by introducing the identical double or quintuple aa DEL into S1 using reverse genetics with an infectious cDNA clone of KNU-141112 (icKNU-141112). We then orally inoculated conventional suckling piglets with icKNU-141112, icS DEL2, or icS DEL5 to compare their pathogenicities. The virulence of both DEL mutant viruses was significantly diminished compared to that of icKNU-141112, which causes severe clinical signs and 100 % mortality. Interestingly, the degree of attenuation differed between the two mutant viruses: icS DEL5 caused neither diarrhea nor mortality, whereas icS DEL2 caused mild to moderate diarrhea, higher viral titers in feces and intestinal tissues, and 25 % mortality. Furthermore, the icS DEL5-infected piglets displayed no remarkable macroscopic and microscopic intestinal lesions, while the icS DEL2-infected piglets showed histopathological changes in small intestine tissues, including moderate-to-severe villous atrophy. Our data indicate that the loss of the pentad (56GENQG60) residues in S alone can be sufficient to give rise to an attenuated phenotype of PEDV.


Subject(s)
Coronavirus Infections , Porcine epidemic diarrhea virus , Swine Diseases , Animals , Swine , Coronavirus Infections/veterinary , Spike Glycoprotein, Coronavirus/genetics , Diarrhea/veterinary
7.
Front Cell Infect Microbiol ; 12: 1079297, 2022.
Article in English | MEDLINE | ID: covidwho-2288412

ABSTRACT

Swine acute diarrhea syndrome coronavirus (SADS-CoV) is an enveloped, positive single-stranded RNA virus belonging to Coronaviridae family, Orthocoronavirinae subfamily, Alphacoronavirus genus. As one of the main causes of swine diarrhea, SADS-CoV has brought huge losses to the pig industry. Although we have a basic understanding of SADS-CoV, the research on the pathogenicity and interactions between host and virus are still limited, especially the metabolic changes induced by SADS-CoV infection. Here, we utilized a combination of untargeted metabolomics and lipomics to analyze the metabolic alteration in SADS-CoV infected cells. Significant changes were observed in 1257 of 2225 metabolites identified in untargeted metabolomics, while the number of lipomics was 435 out of 868. Metabolic pathway enrichment analysis showed that amino acid metabolism, tricarboxylic acid (TCA) cycle and ferroptosis were disrupted during viral infection, suggesting that these metabolic pathways may partake in pathological processes related to SADS-CoV pathogenesis. Collectively, our findings gain insights into the cellular metabolic disorder during SADS-CoV infection, offer a valuable resource for further exploration of the relationship between virus and host metabolic activities, and provide potential targets for the development of antiviral drugs.


Subject(s)
Alphacoronavirus , Coronavirus Infections , Swine Diseases , Swine , Animals , Coronavirus Infections/veterinary , Alphacoronavirus/genetics , Diarrhea/veterinary , Epithelial Cells
8.
J Med Virol ; 95(3): e28672, 2023 03.
Article in English | MEDLINE | ID: covidwho-2288079

ABSTRACT

Swine acute diarrhea syndrome coronavirus (SADS-CoV) is a newly discovered alphacoronavirus with zoonotic potential that causes diarrhea and vomiting mainly in piglets. Having emerged suddenly in 2017, the prevailing opinion is that the virus originated from HKU2, an alphacoronavirus whose primary host is bats, and at some unknown point achieved interspecies transmission via some intermediate. Here, we further explore the evolutionary history and possible cross-species transmission event for SADS-CoV. Coevolutionary analysis demonstrated that HKU2 may have achieved host switch via SADS-related (SADSr)-CoV, which was isolated from the genus Rhinolophus in 2017. SADS-CoV, HKU2, and SADSr-CoV share similar codon usage patterns and showed a lower tendency to use CpG, which may reflect a method of immune escape. The analyses of virus-host coevolution and recombination support SADSr-CoV is the direct source of SADS-CoV that may have undergone recombination events during its formation. Structure-based spike glycoprotein variance analysis revealed a more nuanced evolutionary pathway to receptor recognition for host switch. We did not find a possible positive selection site, and the dN/dS of the S gene was only 0.29, which indicates that the current SADS-CoV is slowly evolving. These results provide new insights that may help predict future cross-species transmission, and possibly surveil future zoonotic outbreaks and associated public health emergencies.


Subject(s)
Alphacoronavirus , Chiroptera , Coronavirus Infections , Swine Diseases , Animals , Swine , Alphacoronavirus/genetics , Coronavirus Infections/epidemiology , Diarrhea/veterinary , Swine Diseases/epidemiology
9.
Viruses ; 15(3)2023 03 09.
Article in English | MEDLINE | ID: covidwho-2252521

ABSTRACT

Bovine Coronavirus (BCoV) is a major pathogen associated with neonatal calf diarrhea. Standard practice dictates that to prevent BCoV diarrhea, dams should be immunized in the last stage of pregnancy to increase BCoV-specific antibody (Ab) titers in serum and colostrum. For the prevention to be effective, calves need to suck maternal colostrum within the first six to twelve hours of life before gut closure to ensure a good level of passive immunity. The high rate of maternal Ab transfer failure resulting from this process posed the need to develop alternative local passive immunity strategies to strengthen the prevention and treatment of BCoV diarrhea. Immunoglobulin Y technology represents a promising tool to address this gap. In this study, 200 laying hens were immunized with BCoV to obtain spray-dried egg powder enriched in specific IgY Abs to BCoV on a large production scale. To ensure batch-to-batch product consistency, a potency assay was statistically validated. With a sample size of 241, the BCoV-specific IgY ELISA showed a sensitivity and specificity of 97.7% and 98.2%, respectively. ELISA IgY Abs to BCoV correlated with virus-neutralizing Ab titers (Pearson correlation, R2 = 0.92, p < 0.001). Most importantly, a pilot efficacy study in newborn calves showed a significant delay and shorter duration of BCoV-associated diarrhea and shedding in IgY-treated colostrum-deprived calves. Calves were treated with milk supplemented with egg powder (final IgY Ab titer to BCoV ELISA = 512; VN = 32) for 14 days as a passive treatment before a challenge with BCoV and were compared to calves fed milk with no supplementation. This is the first study with proof of efficacy of a product based on egg powder manufactured at a scale that successfully prevents BCoV-associated neonatal calf diarrhea.


Subject(s)
Cattle Diseases , Coronavirus, Bovine , Pregnancy , Animals , Cattle , Female , Chickens , Powders , Animals, Newborn , Antibodies, Viral/analysis , Diarrhea/prevention & control , Diarrhea/veterinary , Cattle Diseases/prevention & control
10.
J Virol ; 96(22): e0147322, 2022 11 23.
Article in English | MEDLINE | ID: covidwho-2274306

ABSTRACT

Transmissible gastroenteritis virus (TGEV) is member of the family Coronaviridae and mainly causes acute diarrhea. TGEV infection is characterized by vomiting, watery diarrhea, and severe dehydration, resulting in high mortality rates in neonatal piglets. TGEV infection symptoms are related to an imbalance of sodium absorption in small intestinal epithelial cells; however, the etiology of sodium imbalance diarrhea caused by TGEV remains unclear. In this study, we performed transcriptomic analysis of intestinal tissues from infected and healthy piglets and observed that the expression of NHE3, encoding Na+/H+ exchanger 3 (NHE3), the main exchanger of electroneutral sodium in intestinal epithelial cells, was significantly reduced upon TGEV infection. We also showed that specific inhibition of intestinal NHE3 activity could lead to the development of diarrhea in piglets. Furthermore, we revealed an interaction between TGEV N protein and NHE3 near the nucleus. The binding of TGEV N to NHE3 directly affected the expression and activity of NHE3 on the cell surface and affected cellular electrolyte absorption, leading to diarrhea. Molecular docking and computer-aided screening techniques were used to screen for the blocker of the interaction between TGEV N and NHE3, which identified irinotecan. We then demonstrated that irinotecan was effective in relieving TGEV-induced diarrhea in piglets. These findings provide new insights into the mechanism of TGEV-induced sodium imbalance diarrhea and could lead to the design of novel antiviral strategies against TGEV. IMPORTANCE A variety of coronaviruses have been found to cause severe diarrhea in hosts, including TGEV; however, the pathogenic mechanism is not clear. Therefore, prompt determination of the mechanism and identification of efficient therapeutic agents are required, both for public health reasons and for economic development. In this study, we demonstrated that NHE3 is the major expressed protein of NHEs in the intestine, and its expression decreased by nearly 70% after TGEV infection. Also, specific inhibition of intestinal NHE3 resulted in severe diarrhea in piglets. This demonstrated that NHE3 plays an important role in TGEV-induced diarrhea. In addition, we found that TGEV N directly regulates NHE3 expression and activity through protein-protein interaction, which is essential to promote diarrhea. Molecular docking and other techniques demonstrated that irinotecan could block the interaction and diarrhea caused by TGEV. Thus, our results provide a basis for the development of novel therapeutic agents against TGEV and guidance for the development of drugs for other diarrhea-causing coronaviruses.


Subject(s)
Coronavirus Infections , Coronavirus , Transmissible gastroenteritis virus , Animals , Swine , Transmissible gastroenteritis virus/physiology , Sodium-Hydrogen Exchanger 3/genetics , Sodium-Hydrogen Exchanger 3/metabolism , Nucleocapsid Proteins/metabolism , Irinotecan , Molecular Docking Simulation , Diarrhea/veterinary , Sodium-Hydrogen Exchangers/metabolism , Coronavirus/metabolism , Sodium/metabolism
11.
Virus Genes ; 59(3): 427-436, 2023 Jun.
Article in English | MEDLINE | ID: covidwho-2247734

ABSTRACT

Viral enteritis is a significant cause of death among dogs younger than 6 months. In this study, the presence of canine chaphamaparvovirus (CaChPV), canine bufavirus (CBuV), and canine adenovirus (CAdV) was investigated in 62 diarrheal dogs previously tested for other viral pathogens (canine parvovirus type 2, canine coronavirus, and canine circovirus). CBuV was detected in two dogs (3.22%) and CaChPV in one dog (1.61%). One dog tested positive for three parvoviruses (CPV-2b, CBuV, and CaChPV). All dogs tested negative to CAdV-1/CAdV-2. A long genome fragment of one of the two identified CBuVs and of the CaChPV was obtained and analyzed. New Turkish CBuVs had high identity rates (96%-98% nt; 97%-98% aa) with some Italian CBuV strains (CaBuV/9AS/2005/ITA and CaBuV/35/2016/ITA). The phylogenetic analysis powerfully demonstrated that these viruses belonged to a novel genotype (genotype 2). A part of the genome ChPV-TR-2021-19 revealed high identity rates (> 98% nt and > 99% aa) with some Canadian CaChPV strains (NWT-W88 and NWT-W171) and the Italian CaChPV strain Te/37OVUD/2019/IT. This study is the first report on the detection of CBuV-2 and the concomitant presence of three canine parvoviruses in Turkey. The obtained data will contribute to the molecular epidemiology and the role in the etiology of enteric disease of new parvoviruses.


Subject(s)
Adenoviruses, Canine , Dog Diseases , Parvoviridae Infections , Parvovirus, Canine , Animals , Dogs , Adenoviruses, Canine/genetics , Parvoviridae Infections/veterinary , Turkey , Phylogeny , Canada , Parvovirus, Canine/genetics , Diarrhea/veterinary
12.
Comp Immunol Microbiol Infect Dis ; 94: 101956, 2023 Mar.
Article in English | MEDLINE | ID: covidwho-2242665

ABSTRACT

Canine coronavirus (CCoV) is associated with diarrhea in dogs, with a high incidence and sometimes even death. However, there is currently limited information about its prevalence and molecular characterization in northeastern China. Therefore, in this study, we examined 325 canine fecal specimens in four provinces in northeastern China from 2019 to 2021. PCR results revealed that 57 out of 325 (17.5%) samples were found to be positive for CCoV, and the positive rate varies obviously with city, season, age and so on. High incidence (65%) of viral co-infection was detected in the diarrhea samples and mixed infection of distinct CCoV genotypes occurs extensively. More importantly, sequence analysis showed that the S gene has a strong mutation. Phylogenetic analysis demonstrated that CCoV-I and CCoV-II strains has different origins. In particular, we found the CCoV-IIa strains of S gene sequenced and the reference strain B906_ZJ_2019 were highly clustered, and the reference strain was a recombinant strain of CCoV-I and CCoV-II. Our findings provide useful orienting clues for evaluating the pathogenic potential of CCoV in canines, and point out more details on characterization in northeastern China. Further work is required to determine the significance and continuous genetic evolution of CCoV.


Subject(s)
Coronavirus Infections , Coronavirus, Canine , Dog Diseases , Animals , Dogs , Coronavirus Infections/epidemiology , Coronavirus Infections/veterinary , Coronavirus, Canine/genetics , Prevalence , Phylogeny , Diarrhea/veterinary , China , Genetic Variation , Dog Diseases/epidemiology , Feces
13.
Virology ; 579: 1-8, 2023 02.
Article in English | MEDLINE | ID: covidwho-2237231

ABSTRACT

Since the emergence of the highly pathogenic porcine epidemic diarrhea virus (PEDV) strain in 2010, the prevention of porcine epidemic diarrhea (PED) in pig farms remains problematic. To find the reasons behind the high mortality in young piglets, the relative mRNA expression of inflammation-related factors in infected pigs of different ages as well as uninfected pigs were detected by RT-qPCR. The results showed that the mRNA expression of these factors including IL-6 and TNF-α was more increased in infected younger piglets than infected older pigs. To clarify the relationship between these inflammation related factors, the pairwise linear correlation between the relative expression of these factors were analyzed and showed as network mapping with different correlation coefficients. A strong positive correlation was observed between the expression of various factors in 1-week-old piglets. Combined with the difference in mortality of PEDV infection in pigs of different ages, we hypothesized that lactic acid bacteria (LAB) could inhibit PEDV infection in newborn piglets, and an in vivo experiment was carried out. The results of survival rate and wet/dry ratio showed that LAB alleviated PEDV indued mortality and diarrhea. The detection of viral copies and tissue section staining showed less observed viruses in LAB treated pig. RT-qPCR results of gene expression in intestines showed that LAB modulated the gene expression of various host barrier genes, indicating that LAB is potential to inhibit PEDV infection by regulating the host intestinal barrier. However, to use LAB as therapy, how to improve the efficiency on inhibiting PEDV infection needs further studies.


Subject(s)
Coronavirus Infections , Lactobacillales , Porcine epidemic diarrhea virus , Swine Diseases , Swine , Animals , Porcine epidemic diarrhea virus/genetics , Lactobacillales/genetics , Diarrhea/prevention & control , Diarrhea/veterinary , Diarrhea/pathology , RNA, Messenger , Inflammation , Administration, Oral , Coronavirus Infections/prevention & control , Coronavirus Infections/veterinary , Coronavirus Infections/pathology
14.
Microb Pathog ; 176: 106009, 2023 Mar.
Article in English | MEDLINE | ID: covidwho-2221158

ABSTRACT

Bovine coronavirus (BCoV) is one of the important pathogens that cause calf diarrhea (CD), winter dysentery (WD), and the bovine respiratory disease complex (BRDC), and spreads worldwide. An infection of BCoV in cattle can lead to death of young animals, stunted growth, reduced milk production, and milk quality, thus bringing serious economic losses to the bovine industry. Therefore, it is necessary to prevent and control the spread of BCoV. Here, a systematic review and meta-analysis was conducted to assess the prevalence of BCoV in cattle in China before 2022. A total of 57 articles regarding the prevalence of BCoV in cattle in China were collected from five databases (PubMed, ScienceDirect, CNKI, VIP, and Wan Fang). Based on the inclusion criteria, a total of 15,838 samples were included, and 6,136 were positive cases. The overall prevalence of BCoV was 30.8%, with the highest prevalence rate (60.5%) identified in South China and the lowest prevalence (15.6%) identified in Central China. We also analyzed other subgroup information, included sampling years, sample sources, detection methods, breeding methods, age, type of cattle, presence of diarrhea, and geographic and climatic factors. The results indicated that BCoV was widely prevalent in China. Among all subgroups, the sample sources, detection methods, breeding methods, and presence or absence of diarrheal might be potential risk factors responsible for BCoV prevalence. It is recommended to strengthen the detection of BCoV in cattle, in order to effectively control the spread of BCoV.


Subject(s)
Cattle Diseases , Coronavirus, Bovine , Dysentery , Cattle , Animals , Prevalence , Cattle Diseases/epidemiology , Diarrhea/veterinary , China/epidemiology , Feces
15.
Vet Microbiol ; 275: 109596, 2022 Dec.
Article in English | MEDLINE | ID: covidwho-2132636

ABSTRACT

Porcine epidemic diarrhea (PED) is a highly contagious and virulent intestinal infectious disease characterized by diarrhea, vomiting and dehydration. Although PEDV-induced apoptosis has been characterized in vitro and vivo, the functional proteins related to this event and the mechanism still need further research. Here, we firstly demonstrated that PEDV epidemic strain JS2013 could trigger apoptosis in a dose- and time-dependent manner. Then, PEDV 3CLpro was further identified as a crucial inducer of PEDV-triggered apoptosis. In addition, using site-directed mutagenesis to disrupt the protease activity of 3CLpro by His41 and Cys144 mutations, we found that 3CLpro-induced apoptosis and mitochondrial damage significantly reduced, suggesting that the protease activity of 3CLpro was essential for apoptosis and mitochondrial damage. Furthermore, PEDV 3CLpro could synergistically promote MAVS-mediated apoptosis and MAVS was involved in the signaling pathway of 3CLpro-induced apoptosis, but no direct interaction between PEDV 3CLpro and MAVS was detected by immunoprecipitation assays. Our findings provide important insights into the role of 3CLpro in the pathogenicity of PEDV.


Subject(s)
Coronavirus Infections , Porcine epidemic diarrhea virus , Swine Diseases , Swine , Animals , Membrane Potential, Mitochondrial , Apoptosis , Signal Transduction , Peptide Hydrolases/metabolism , Diarrhea/veterinary , Coronavirus Infections/veterinary
16.
Viruses ; 14(11)2022 Oct 27.
Article in English | MEDLINE | ID: covidwho-2090362

ABSTRACT

Bovine coronavirus (BCoV) causes severe diarrhea in neonatal calves, winter dysentery in adult cattle, and respiratory disease in feedlot cattle, resulting in economic losses. A total of 16/140 calf diarrheic feces samples collected in South Korea between 2017 and 2018 were positive for BCoV. Phylogenetic analysis of the complete spike and hemagglutinin/esterase genes revealed that the 16 Korean BCoV strains belonged to group GIIa along with Korean strains isolated after 2000, whereas Korean BCoV strains isolated before 2000 belonged to group GI. Mice and goats inoculated with an inactivated KBR-1 strain (isolated from this study) generated higher antibody titers (96 ± 13.49 and 73 ± 13.49, respectively) when mixed with the Montanide01 adjuvant than when mixed with the Carbopol or IMS1313 adjuvants. Viral antigens were detected in the large intestine, jejunum, and ileum of calves inoculated with inactivated KBR-1 vaccine (104.0 TCID50/mL) at 14 days of post-challenge (DPC). However, no viral antigens were detected in calves vaccinated with a higher dose of inactivated KBR-1 strain (106.0 TCID50/mL) at 14 DPC, and they had high antibody titers and stable diarrhea scores. Currently, the group GIIa is prevalent in cows in South Korea, and although further research is needed in the future, the recently isolated KBR-1 strain has potential value as a new vaccine candidate.


Subject(s)
Cattle Diseases , Coronavirus Infections , Coronavirus, Bovine , Female , Cattle , Animals , Mice , Phylogeny , Feces , Diarrhea/veterinary , Antigens, Viral , Republic of Korea
17.
Prev Vet Med ; 209: 105792, 2022 Dec.
Article in English | MEDLINE | ID: covidwho-2086629

ABSTRACT

Canine enteric coronavirus (CCoV) is a pathogenic virus that infects dogs worldwide, causing enteric issues and causing harm to the dog industry and dogs. Although CCoV is not recognized as a highly lethal canine intestinal pathogen, it has been reported that CCoV is significantly associated with canine diarrhea in dogs. CCoV is a common health problem in dogs, attracting major concern from veterinarians and dog owners across China. In this study, we summarized the prevalence and epidemiological characteristics of CCoV in dogs in mainland China. The study revealed that the pooled prevalence of CCoV infection was 33%, and which associated with age, but not with sex, season and immunization status. In addition, the study also further suggested that CCoV-II was the predominant CCoV subtype in Chinese dogs. This study will provide valuable information for CCoV infections across China and other countries. Furthermore, this study also suggested that continuous surveillance and epidemiological studies of CCoV are necessary.


Subject(s)
Coronavirus Infections , Coronavirus , Dog Diseases , Veterinarians , Dogs , Animals , Humans , Coronavirus Infections/epidemiology , Coronavirus Infections/veterinary , Diarrhea/epidemiology , Diarrhea/veterinary , China/epidemiology , Dog Diseases/epidemiology
18.
Arch Virol ; 167(11): 2249-2262, 2022 Nov.
Article in English | MEDLINE | ID: covidwho-2075433

ABSTRACT

Porcine deltacoronavirus (PDCoV) is an enteric virus that was first identified in 2012. Although PDCoV has been detected worldwide, there is little information about its circulation in western China. In this study, fecal samples were collected from piglets with watery diarrhea in western China between 2015 and 2018 for the detection of PDCoV. The positive rate was 29.9%. A PDCoV strain (CHN/CQ/BN23/2016, BN23) was isolated and selected for further investigation. Phylogenetic analysis showed that this strain formed an individual cluster between the early Chinese lineage and the Chinese lineage. RDP4 and SimPlot analysis demonstrated that strain BN23 is a recombinant of Thailand/S5015L/2015 and CHN-AH-2004. The pathogenicity of BN23 was evaluated in 3-day-old piglets. Challenged piglets developed serious clinical signs and died at 3 days post-inoculation. Our data show that PDCoV is prevalent in western China and that strain BN23 is highly pathogenic to newborn piglets. Therefore, more attention should be paid to emerging PDCoV strains in western China.


Subject(s)
Deltacoronavirus , Animals , China , Coronavirus Infections/veterinary , Coronavirus Infections/virology , Deltacoronavirus/genetics , Deltacoronavirus/isolation & purification , Deltacoronavirus/pathogenicity , Diarrhea/veterinary , Genomics , Phylogeny , Swine , Swine Diseases/virology , Virulence
19.
Viruses ; 14(10)2022 10 08.
Article in English | MEDLINE | ID: covidwho-2066562

ABSTRACT

Pig diarrhea is a universal problem in the process of pig breeding, which seriously affects the development of the pig industry. Porcine enteric coronaviruses (PECoVs) are common pathogens causing diarrhea in pigs, currently including transmissible gastroenteritis virus (TGEV), porcine epidemic diarrhea virus (PEDV), porcine deltacoronavirus (PDCoV) and swine acute diarrhea syndrome coronavirus (SADS-CoV). With the prosperity of world transportation and trade, the spread of viruses is becoming wider and faster, making it even more necessary to prevent PECoVs. In this paper, the host factors required for the efficient replication of these CoVs and the compounds that exhibit inhibitory effects on them were summarized to promote the development of drugs against PECoVs. This study will be also helpful in discovering general host factors that affect the replication of CoVs and provide references for the prevention and treatment of other CoVs.


Subject(s)
Coronavirus Infections , Coronavirus , Porcine epidemic diarrhea virus , Swine Diseases , Swine , Animals , Coronavirus Infections/drug therapy , Coronavirus Infections/prevention & control , Coronavirus Infections/veterinary , Diarrhea/drug therapy , Diarrhea/veterinary
20.
J Vet Med Sci ; 84(11): 1543-1550, 2022 Nov 14.
Article in English | MEDLINE | ID: covidwho-2065087

ABSTRACT

In this study, the viral genome extraction performance of automatic nucleic acid extractors and manual nucleic acid extraction kits was compared. We showed that compared with manual kits, the automatic extractors showed superior genome extraction performance using bovine viral diarrhea virus (BVDV) genome-positive cattle sera and bovine coronavirus/infectious bovine rhinotracheitis virus-spiked cattle nasal swabs. In addition, the subgenotyping of BVDV strains detected in Tokachi Province in Japan during 2016-2017 was performed. Results showed that most of these BVDV strains belonged to subgenotype 1b, while few strains belonged to subgenotypes 1a and 2a. This study showed the high applicability of automatic nucleic acid extractors in extracting multiple viral genomes and the dominant subgenotype of BVDV in Tokachi.


Subject(s)
Bovine Virus Diarrhea-Mucosal Disease , Cattle Diseases , Diarrhea Virus 1, Bovine Viral , Diarrhea Viruses, Bovine Viral , Nucleic Acids , Cattle , Animals , RNA, Viral/genetics , Japan , Genotype , Diarrhea Viruses, Bovine Viral/genetics , Diarrhea/veterinary , Magnetic Phenomena , Diarrhea Virus 1, Bovine Viral/genetics , Phylogeny
SELECTION OF CITATIONS
SEARCH DETAIL